74HCS595

8-bit shift register with Schmitt-trigger inputs and 3-state output registers

Rev. 2 — 28 April 2025

Product data sheet

1. General description

The 74HCS595 is an 8-bit serial-in/serial or parallel-out shift register with a storage register and 3-state outputs. Both the shift and storage register have separate clocks. The device features a serial input (DS) and a serial output (Q7S) to enable cascading and an asynchronous reset $\overline{\text{MR}}$ input. A LOW on $\overline{\text{MR}}$ will reset the shift register. Data is shifted on the LOW-to-HIGH transitions of the SHCP input. The data in the shift register is transferred to the storage register on a LOW-to-HIGH transition of the STCP input. If both clocks are connected together, the shift register will always be one clock pulse ahead of the storage register. Data in the storage register appears at the output whenever the output enable input ($\overline{\text{OE}}$) is LOW. A HIGH on $\overline{\text{OE}}$ causes the outputs to assume a high-impedance OFF-state. Operation of the $\overline{\text{OE}}$ input does not affect the state of the registers. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}.

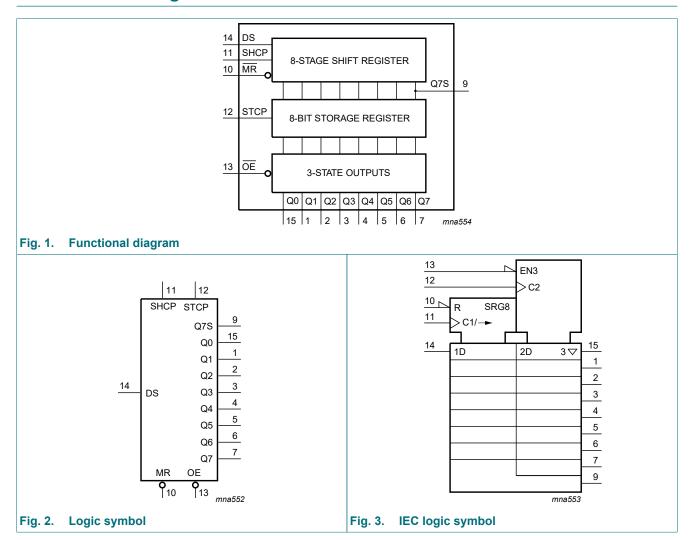
All inputs are Schmitt-trigger inputs, capable of transforming slowly changing input signals into sharply defined, jitter-free output signals.

2. Features and benefits

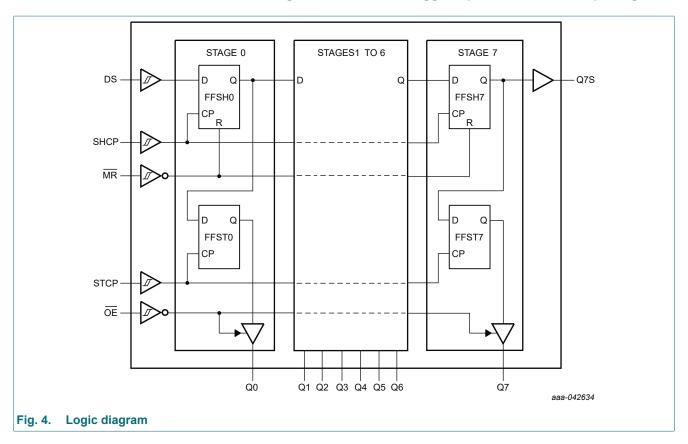
- Wide supply voltage range from 2.0 V to 6.0 V
- Schmitt-trigger inputs
- Low power consumption
 - Typical supply current (I_{CC}) of 100 nA
 - Typical input leakage current (I_I) of ±10 nA
- ±7.8 mA output drive at 6 V
- 8-bit serial input and 8-bit serial or parallel output
- · Storage register with 3-state outputs
- Shift register with direct clear
- Latch-up performance exceeds 100 mA per JESD 78 Class II Level B
- Complies with JEDEC standards:
 - JESD7A (2.0 V to 6.0 V)
- ESD protection:
 - HBM ANSI/ESDA/JEDEC JS-001 class 3A exceeds 4000 V
 - CDM ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1500 V
- Multiple package options
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

3. Applications

- Serial-to-parallel data conversion
- · Remote control holding register
- Output expansion
- LED matrix control
- 7-segment display control
- · 8-bit data storage


8-bit shift register with Schmitt-trigger inputs and 3-state output registers

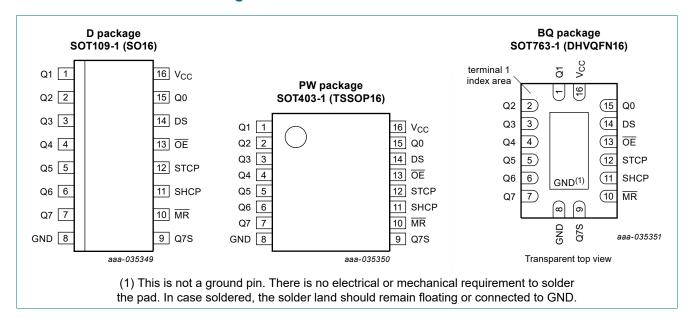
4. Ordering information


Table 1. Ordering information

Type number	per Package							
	Temperature range	Name	Description	Version				
74HCS595D	-40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1				
74HCS595PW	-40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1				
74HCS595BQ	-40 °C to +125 °C	DHVQFN16	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 × 3.5 × 0.85 mm	SOT763-1				

5. Functional diagram

8-bit shift register with Schmitt-trigger inputs and 3-state output registers



3 / 21

8-bit shift register with Schmitt-trigger inputs and 3-state output registers

6. Pinning information

6.1. Pinning

6.2. Pin description

Table 2. Pin description

Symbol	Pin	Description
Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7	15, 1, 2, 3, 4, 5, 6, 7	parallel data outputs
GND	8	ground (0 V)
Q7S	9	serial data output, can be used for cascading
MR	10	master reset, clears shift register (active LOW)
SHCP	11	shift register clock, rising edge triggered
STCP	12	storage register clock, rising edge triggered
ŌE	13	output enable (active LOW)
DS	14	serial data input
Vcc	16	supply voltage

8-bit shift register with Schmitt-trigger inputs and 3-state output registers

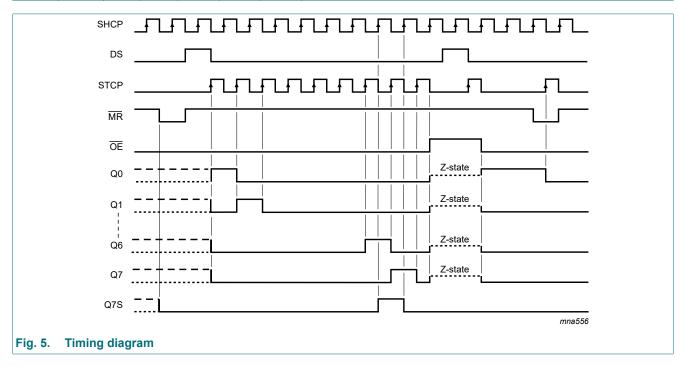

7. Functional description

Table 3. Function table

 $H = HIGH \ voltage \ state; \ L = LOW \ voltage \ state; \ \uparrow = LOW - to - HIGH \ transition;$

X = don't care; NC = no change; Z = high-impedance OFF-state.

Contro	I			Input	Outpu	t	Function
SHCP	STCP	ŌΕ	MR	DS	Q7S	Qn	
X	Х	L	L	Х	L	NC	a LOW-level on MR only affects the shift registers
X	1	L	L	Х	L	L	empty shift register loaded into storage register
X	Х	Н	L	Х	L	Z	shift register clear; parallel outputs in high-impedance OFF-state
↑	Х	L	Н	Н	Q6S	NC	logic HIGH-level shifted into shift register stage 0. Contents of all shift register stages shifted through, e.g. previous state of stage 6 (internal Q6S) appears on the serial output (Q7S).
X	1	L	Н	Х	NC	QnS	contents of shift register stages (internal QnS) are transferred to the storage register and parallel output stages
↑	1	L	Н	Х	Q6S	QnS	contents of shift register shifted through; previous contents of the shift register is transferred to the storage register and the parallel output stages

8-bit shift register with Schmitt-trigger inputs and 3-state output registers

8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+7	V
I _{IK}	input clamping current	$V_1 < -0.5 \text{ V or } V_1 > V_{CC} + 0.5 \text{ V}$	[1]	-	±20	mA
I _{OK}	output clamping current	V_{O} < -0.5 V or V_{O} > V_{CC} + 0.5 V	[1]	-	±20	mA
Io	output current	V _O = 0 V to V _{CC}		-	±35	mA
I _{CC}	supply current			-	70	mA
I _{GND}	ground current			-70	-	mA
Tj	junction temperature		[2]	-	+150	°C
T _{stg}	storage temperature			-65	+150	°C
V _{ESD}	electrostatic discharge	HBM ANSI/ESDA/JEDEC JS-001 Class 3A exceeds 4000 V		-	±4000	V
		CDM ANSI/ESDA/JEDEC JS-002 Class C3 exceeds 1500 V		-	±1500	V
P _{tot}	total power dissipation		[3]	-	500	mW

^[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.

9. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage		2.0	5.0	6.0	V
VI	input voltage		0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	°C

^[2] Guaranteed by design.

^[3] For SOT109-1 (SO16) package: P_{tot} derates linearly with 12.4 mW/K above 110 °C. For SOT403-1 (TSSOP16) package: P_{tot} derates linearly with 8.5 mW/K above 91 °C. For SOT763-1 (DHVQFN16) package: P_{tot} derates linearly with 11.2 mW/K above 106 °C.

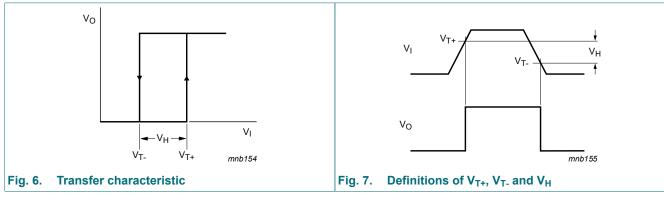
8-bit shift register with Schmitt-trigger inputs and 3-state output registers

10. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		-40 °C to	o +85 °C	-40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
V _{T+}	positive-going	see Fig. 6 and Fig. 7								
	threshold voltage	V _{CC} = 2.0 V	0.7	-	1.5	0.7	1.5	0.7	1.5	V
	voitage	V _{CC} = 4.5 V	1.7	-	3.15	1.7	3.15	1.7	3.15	V
		V _{CC} = 6 V	2.1	-	4.2	2.1	4.2	2.1	4.2	V
		V _{CC} = 3.0 V to 3.6 V	0.4V _{CC}	-	0.7V _{CC}	0.4V _{CC}	0.7V _{CC}	0.4V _{CC}	0.7V _{CC}	V
		V _{CC} = 4.5 V to 5.5 V	0.38V _{CC}	-	0.7V _{CC}	0.38V _{CC}	0.7V _{CC}	0.38V _{CC}	0.7V _{CC}	V
V _{T-}	negative-	see Fig. 6 and Fig. 7								
	going threshold	V _{CC} = 2.0 V	0.3	-	1.0	0.3	1.0	0.3	1.0	V
	voltage	V _{CC} = 4.5 V	0.9	-	2.2	0.9	2.2	0.9	2.2	V
	_	V _{CC} = 6 V	1.2	-	3.0	1.2	3.0	1.2	3.0	V
		V _{CC} = 3.0 V to 3.6 V	0.2V _{CC}	-	0.5V _{CC}	0.2V _{CC}	0.5V _{CC}	0.2V _{CC}	0.5V _{CC}	V
		V _{CC} = 4.5 V to 5.5 V	0.2V _{CC}	-	0.49V _{CC}	0.2V _{CC}	0.49V _{CC}	0.2V _{CC}	0.49V _{CC}	V
V _H	hysteresis	see Fig. 6 and Fig. 7								
	voltage[1]	V _{CC} = 2.0 V	0.2	0.52	1.0	0.2	1.0	0.2	1.0	V
		V _{CC} = 4.5 V	0.4	0.85	1.4	0.4	1.4	0.4	1.4	V
		V _{CC} = 6 V	0.6	1.1	1.6	0.6	1.6	0.6	1.6	V
		V _{CC} = 3.0 V to 3.6 V	0.1V _{CC}	0.72	0.38V _{CC}	0.1V _{CC}	0.38V _{CC}	0.1V _{CC}	0.38V _{CC}	V
		V _{CC} = 4.5 V to 5.5 V	0.09V _{CC}	0.94	0.29V _{CC}	0.09V _{CC}	0.29V _{CC}	0.09V _{CC}	0.29V _{CC}	V
V _{OH}	HIGH-level	V _I = V _{IH} or V _{IL}								
	output voltage	I _{OH} = -20 μA; V _{CC} = 2.0 V to 6 V	V _{CC} -0.1	V _{CC} -0.002	-	V _{CC} -0.1	-	V _{CC} -0.1	-	V
		I _{OH} = -4 mA; V _{CC} = 3.0 V	2.7	2.85	-	2.7	-	2.7	-	V
		I _{OH} = -6 mA; V _{CC} = 4.5 V	4.0	4.3	-	4.0	-	4.0	-	V
		I _{OH} = -7.8 mA; V _{CC} = 6.0 V	5.48	5.75	-	5.4	-	5.4	-	V
V_{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}								
	output voltage	I _{OL} = 20 μA; V _{CC} = 2.0 V to 6 V	-	0.002	0.1	-	0.1	-	0.1	V
		I _{OL} = 4 mA; V _{CC} = 3.0 V	-	0.14	0.25	-	0.25	-	0.25	V
		I _{OL} = 6 mA; V _{CC} = 4.5 V	-	0.18	0.26	-	0.30	-	0.30	V
		I _{OL} = 7.8 mA; V _{CC} = 6.0 V	-	0.22	0.26	-	0.33	-	0.33	V
lı	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	±0.01	±0.1	-	±0.25	-	±1.0	μΑ
I _{OZ}	OFF-state output current	$V_{CC} = 6.0 \text{ V};$ $V_{O} = V_{CC} \text{ or GND}$	-	±0.05	±0.25	-	±1.0	-	±2.0	μΑ


8-bit shift register with Schmitt-trigger inputs and 3-state output registers


Symbol	Parameter	Conditions		25 °C -			+85 °C	-40 °C to	Unit	
			Min	Тур	Max	Min	Max	Min	Max	
I _{CC}		V _I = V _{CC} or GND; I _O = 0 A; V _{CC} = 6.0 V	-	0.1	-	-	0.5	-	2.0	μΑ

[1] Guaranteed by design.

10.1. Transfer characteristic waveforms and graphs

10.1.1. For inputs

8-bit shift register with Schmitt-trigger inputs and 3-state output registers

10.1.2. For outputs

11. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Section 11.1.

Symbol	Parameter	rameter Conditions		25 °C		-40 °C to	+85 °C	-40 °C to	+125 °C	Unit
			Min	Typ[1]	Max	Min	Max	Min	Max	
t _{pd}	propagation	SHCP to Q7S; see Fig. 12 [2]								
	delay	V _{CC} = 2 V	-	14	19	-	25	-	28	ns
		V _{CC} = 4.5 V	-	6	8	-	9	-	10	ns
		V _{CC} = 6 V	-	5	7	-	8	-	9	ns
		V _{CC} = 3.0 V to 3.6 V	-	8	12	-	14	-	16	ns
		V _{CC} = 4.5 V to 5.5 V	-	6	8	-	9	-	10	ns
		STCP to Qn; see Fig. 13 [2]								
		V _{CC} = 2 V	-	16	21	-	33	-	37	ns
		V _{CC} = 4.5 V	-	6	9	-	11	-	12	ns
		V _{CC} = 6 V	-	6	8	-	9	-	10	ns
		V _{CC} = 3.0 V to 3.6 V	-	8	12	-	14	-	16	ns
		V _{CC} = 4.5 V to 5.5 V	-	6	9	-	11	-	12	ns

8-bit shift register with Schmitt-trigger inputs and 3-state output registers

Symbol	Parameter	Conditions		25 °C		-40 °C to	o +85 °C	-40 °C to +125 °C		Unit
			Min	Typ[1]	Max	Min	Max	Min	Max	
t _{PHL}	HIGH to LOW	MR to Q7S; see Fig. 15								
	propagation delay	V _{CC} = 2 V	-	13	19	-	24	-	27	ns
	delay	V _{CC} = 4.5 V	-	6	8	-	10	-	11	ns
		V _{CC} = 6 V	-	6	8	-	9	-	10	ns
		V _{CC} = 3.0 V to 3.6 V	-	7	12	-	14	-	16	ns
		V _{CC} = 4.5 V to 5.5 V	-	6	8	-	10	-	11	ns
t _{en}	enable time	OE to Qn; see Fig. 16 [3]								
		V _{CC} = 2 V	-	12	18	-	26	-	27	ns
		V _{CC} = 4.5 V	-	6	9	-	12	-	13	ns
		V _{CC} = 6 V	-	5	8	-	10	-	11	ns
		V _{CC} = 3.0 V to 3.6 V	-	7	12	-	14	-	16	ns
		V _{CC} = 4.5 V to 5.5 V	-	5	9	-	12	-	13	ns
t _{dis}	disable time	OE to Qn; see Fig. 16 [4]								
		V _{CC} = 2 V	-	13	16	-	18	-	20	ns
		V _{CC} = 4.5 V	-	9	11	-	12	-	13	ns
		V _{CC} = 6 V	-	8	10	-	11	-	12	ns
		V _{CC} = 3.0 V to 3.6 V	-	9	12	-	14	-	16	ns
		V _{CC} = 4.5 V to 5.5 V	-	8	11	-	11	-	13	ns
t _W	pulse width	SHCP, STCP, HIGH or LOW; see Fig. 12 and Fig. 13								
		V _{CC} = 2 V	7	-	-	8	-	9	-	ns
		V _{CC} = 4.5 V	7	-	-	7	-	7	-	ns
		V _{CC} = 6 V	7	-	-	7	-	7	-	ns
		V _{CC} = 3.0 V to 3.6 V	7	-	-	7	-	7	-	ns
		V _{CC} = 4.5 V to 5.5 V	7	-	-	7	-	7	-	ns
		MR LOW; see Fig. 15								
		V _{CC} = 2 V	8	-	-	9	-	10	-	ns
		V _{CC} = 4.5 V	7	-	-	7	-	7	-	ns
		V _{CC} = 6 V	7	-	-	7	-	7	-	ns
		V _{CC} = 3.0 V to 3.6 V	7	-	-	7	-	7	-	ns
		V _{CC} = 4.5 V to 5.5 V	7	-	-	7	-	7	-	ns

8-bit shift register with Schmitt-trigger inputs and 3-state output registers

Symbol	Parameter	Conditions		25 °C		-40 °C to	o +85 °C	-40 °C to +125 °C		Unit
			Min	Typ[1]	Max	Min	Max	Min	Max	
t _{su}	set-up time	DS to SHCP; see Fig. 14								
		V _{CC} = 2 V	8	-	-	11	-	13	-	ns
		V _{CC} = 4.5 V	4	-	-	5	-	5	-	ns
		V _{CC} = 6 V	3	-	-	4	-	4	-	ns
		V _{CC} = 3.0 V to 3.6 V	5	-	-	6	-	6	-	ns
		V _{CC} = 4.5 V to 5.5 V	4	-	-	5	-	5	-	ns
		SHCP to STCP; see Fig. 13								
		V _{CC} = 2 V	11	-	-	16	-	18	-	ns
		V _{CC} = 4.5 V	5	-	-	6	-	7	-	ns
		V _{CC} = 6 V	4	-	-	5	-	6	-	ns
		V _{CC} = 3.0 V to 3.6 V	6	-	-	7	-	8	-	ns
		V _{CC} = 4.5 V to 5.5 V	5	-	-	6	-	7	-	ns
		MR to STCP; see Fig. 15								
		V _{CC} = 2 V	8	-	-	11	-	13	-	ns
		V _{CC} = 4.5 V	4	-	-	5	-	6	-	ns
		V _{CC} = 6 V	4	-	-	5	-	5	-	ns
		V _{CC} = 3.0 V to 3.6 V	6	-	-	7	-	8	-	ns
		V _{CC} = 4.5 V to 5.5 V	4	-	-	5	-	6	-	ns
t _h	hold time	DS to SHCP; see Fig. 14								
		V _{CC} = 2 V	0	-	-	0	-	0	-	ns
		V _{CC} = 4.5 V	0	-	-	0	-	0	-	ns
		V _{CC} = 6 V	0	-	-	0	-	0	-	ns
		V _{CC} = 3.0 V to 3.6 V	0	-	-	0	-	0	-	ns
		V _{CC} = 4.5 V to 5.5 V	0	-	-	0	-	0	-	ns
t _{rec}	recovery time	MR to SHCP; see Fig. 15								
		V _{CC} = 2 V	8	-	-	11	-	13	-	ns
		V _{CC} = 4.5 V	4	-	-	5	-	6	-	ns
		V _{CC} = 6 V	4	-	-	5	-	5	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	5	-	-	6	-	7	-	ns
		V _{CC} = 4.5 V to 5.5 V	4	-	-	5	-	6	-	ns
f _{max}	maximum frequency	SHCP, STCP; see Fig. 12 and Fig. 13								
		V _{CC} = 2 V	35	-	-	23	-	19	-	MHz
		V _{CC} = 4.5 V	110	-	-	70	-	60	-	MHz
		V _{CC} = 6 V	130	-	-	82	-	75	-	MHz
		V _{CC} = 3.0 V to 3.6 V	91	-	-	57	-	49	-	MHz
		V _{CC} = 4.5 V to 5.5 V	110	-	-	70	-	60	-	MHz

8-bit shift register with Schmitt-trigger inputs and 3-state output registers

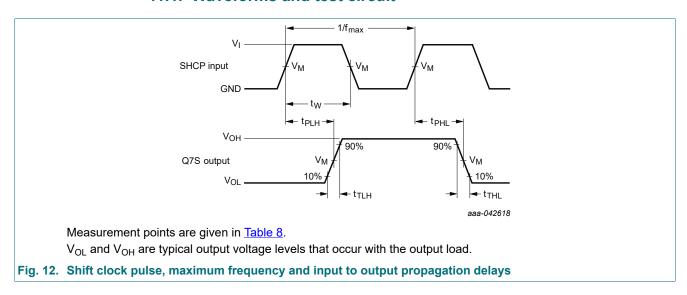
Symbol	Parameter	Conditions		25 °C		-40 °C to	o +85 °C	-40 °C to	+125 °C	Unit
			Min	Typ[1]	Max	Min	Max	Min	Max	
t _t	transition time	Qn and Q7S; [5] see <u>Fig. 12</u> and <u>Fig. 13</u>								
		V _{CC} = 2 V	-	9	13	-	15	-	16	ns
		V _{CC} = 4.5 V	-	5	7	-	8	-	8	ns
		V _{CC} = 6 V	-	4	6	-	7	-	7	ns
		V _{CC} = 3.0 V to 3.6 V	-	6	8	-	9	-	10	ns
		V _{CC} = 4.5 V to 5.5 V	-	4	7	-	8	-	8	ns
Cı	input capacitance		-	1.5	-	-	5	-	5	pF
C _{PD}	power dissipation capacitance	f_i = 1 MHz; C_L = 0 pF; [6][7] V_I = GND to V_{CC} ; V_{CC} = 2.0 V to 6.0 V	-	40	-	-	-	-	-	pF

- Typical values are measured at nominal supply voltage.
- [2] t_{pd} is the same as t_{PHL} and t_{PLH} .
- t_{en} is the same as t_{PZL} and t_{PZH} . [3]
- t_{dis} is the same as t_{PLZ} and t_{PHZ}. [4]
- [5]
- t_t is the same as t_{THL} and t_{TLH} . C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

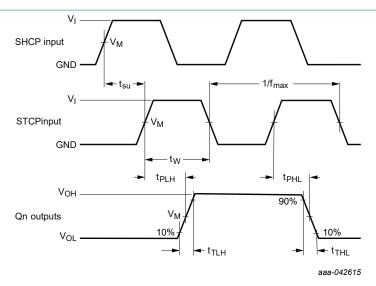
 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

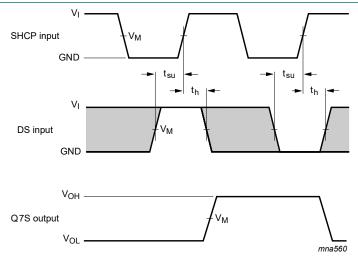

 $\Sigma(C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs};$

C_L = output load capacitance in pF;


V_{CC} = supply voltage in V.

[7] All 9 outputs switching.

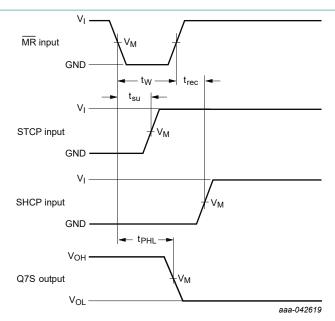
11.1. Waveforms and test circuit


8-bit shift register with Schmitt-trigger inputs and 3-state output registers

Measurement points are given in Table 8.

V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

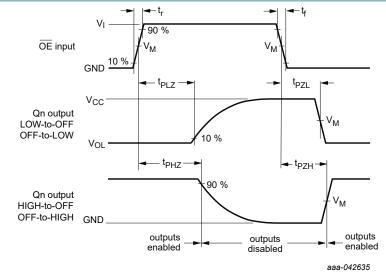
Fig. 13. Storage clock to output propagation delays


Measurement points are given in Table 8.

The shaded areas indicate when the input is permitted to change for predictable output performance.

 V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig. 14. Data set-up and hold times


8-bit shift register with Schmitt-trigger inputs and 3-state output registers

Measurement points are given in Table 8.

 V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig. 15. Master reset to output propagation delays

Measurement points are given in Table 8.

 V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

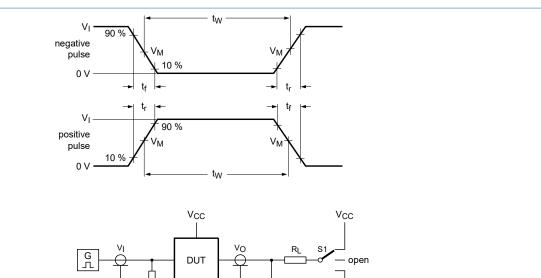

Fig. 16. Enable and disable times

Table 8. Measurement points

Input	Output
V _M	V_{M}
0.5V _{CC}	0.5V _{CC}

8-bit shift register with Schmitt-trigger inputs and 3-state output registers

001aad983

Test data is given in Table 9.

Definitions for test circuit:

 $\ensuremath{C_L}$ = load capacitance including jig and probe capacitance.

R_L = load resistance.

 R_T = termination resistance should be equal to the output impedance Z_o of the pulse generator.

S1 = test selection switch.

Fig. 17. Test circuit for measuring switching times

Table 9. Test data

Input		Load		S1 position			
	VI	t _r , t _f	CL	R_L	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t_{PZL}, t_{PLZ}
	V _{CC}	2.5 ns	50 pF	1 kΩ	open	GND	V _{CC}

8-bit shift register with Schmitt-trigger inputs and 3-state output registers

12. Package outline

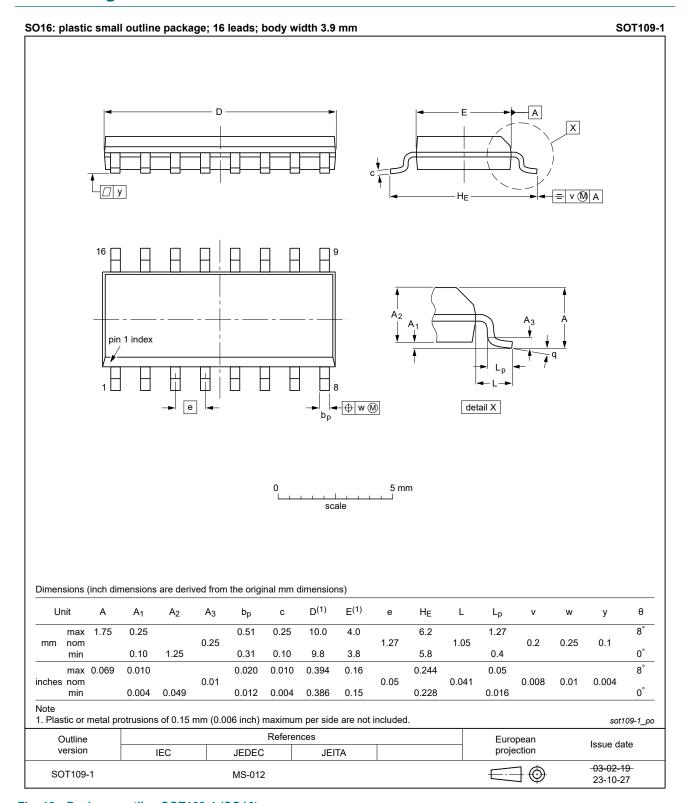


Fig. 18. Package outline SOT109-1 (SO16)

8-bit shift register with Schmitt-trigger inputs and 3-state output registers

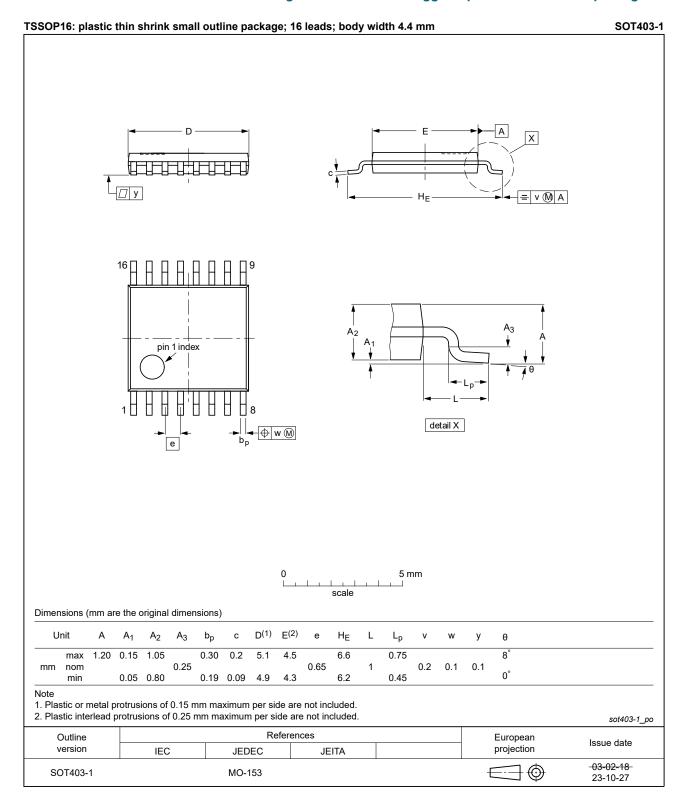


Fig. 19. Package outline SOT403-1 (TSSOP16)

8-bit shift register with Schmitt-trigger inputs and 3-state output registers

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 x 3.5 x 0.85 mm SOT763-1

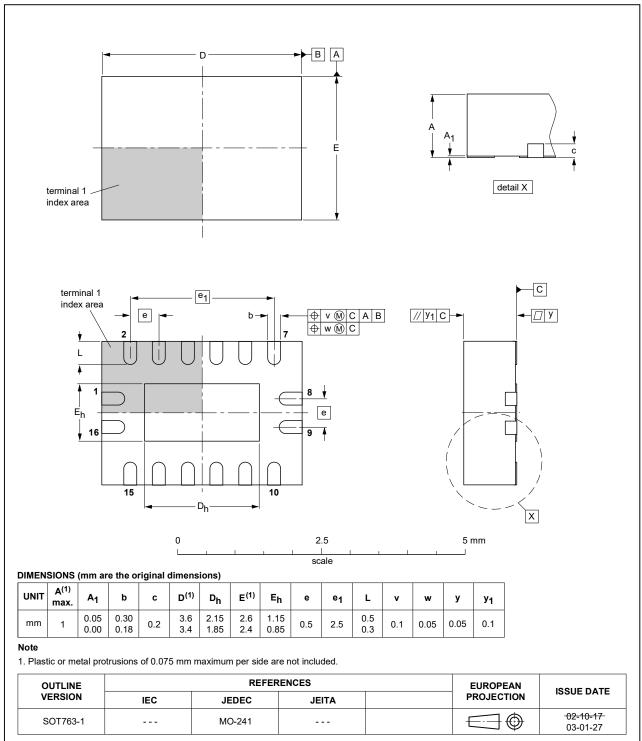


Fig. 20. Package outline SOT763-1 (DHVQFN16)

8-bit shift register with Schmitt-trigger inputs and 3-state output registers

13. Abbreviations

Table 10. Abbreviations

Acronym	Description	
CDM	Charge Device Model	
DUT	Device Under Test	
ESD	ElectroStatic Discharge	
НВМ	Human Body Model	

14. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
74HCS595 v.2	20250428	Product data sheet	-	74HCS595 v.1	
Modifications:	 Section 2: typo corrected. Section 10: Maximum I_{OZ} value changed from ±5 μA to ±2 μA 				
74HCS595 v.1	20250305	Product data sheet	-	-	

8-bit shift register with Schmitt-trigger inputs and 3-state output registers

15. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition	
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.	
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.	
Product [short] data sheet	Production	This document contains the product specification.	

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

74HCS595

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2025. All rights reserved

8-bit shift register with Schmitt-trigger inputs and 3-state output registers

Contents

1. General description	1
2. Features and benefits	1
3. Applications	1
4. Ordering information	2
5. Functional diagram	2
6. Pinning information	
6.1. Pinning	
6.2. Pin description	
7. Functional description	
8. Limiting values	
Recommended operating conditions	
10. Static characteristics	
10.1. Transfer characteristic waveforms and graphs	
10.1.1. For inputs	8
10.1.2. For outputs	
11. Dynamic characteristics	9
11.1. Waveforms and test circuit	
12. Package outline	
13. Abbreviations	
14. Revision history	
15. Legal information	

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 28 April 2025

[©] Nexperia B.V. 2025. All rights reserved