

Agenda

- Introduction
- Batteries
- Battery interface device
- Supervisors/voltage monitors
- DC-DC converters

How nanoPower Technology Extends Battery Life for Compact Designs

nanoPower technology is the key to maximizing battery life while achieving all key product features and quality

Basic Building Blocks of a nanoPower System

The Role of Batteries in Sensor-based Designs

Example #1: Alkaline Batteries – The Most Ubiquitous

1.6

1.5

1.4

1.3

1.0

0.9

0.8

0 1.1 Noltage

Design challenges:

- Min operational voltage < 1V
- >500mOhms DC resistance in temperature

Classification	Alkaline	
Chemical System	Zinc-Manganese Dioxide (Zn/MnO ₂) No added Mercury or Cadmium	
Designation	ANSI-15A, IEC-LR6	
Nominal Voltage	1.5 volts	
Nominal IR	150 to 300 milliohms (fresh)	
Operating Temp	-18°C to 55°C (0°F to 130°F)	
Typical Weight	23.0 grams (0.8 oz.)	
Typical Volume	8.1 cubic centimeters (0.5 cubic inch)	
Jacket	Plastic label	
Shelf Life	10 years at 21°C	
Terminal	Flat contact	

Typical discharge characteristics at various power drains

All testing at 21°C (70°F)

Example #2: Battery Optimized for Longest Lifetime (>= 20 Years)

E.g. Lithium thionyl chloride batteries Why?

- High specific energy
 - > Typical D cell nominal capacity is 19Ahr
 - > But... decreases with high temp to ~12Ahr @ 75°C
- Low self-discharge rate/long service life
 - > 1% after 1 year at 20°C
- Wide operating temperature
 - > -55°C to 125°C

Specifications	
Nominal voltage	3.6V
Nominal capacity (at 4mA, +20°C, 2.0V cut off)	19,000mAh
Max. continuous discharge current (to get 50% of the nominal capacity, +20°C, 2.0V cut off)	100mA
Max. pulse discharge current	250mA
Weight	100g
Operating temperature range	-55°C ~ +85°C
Reaction surface area	40cm ²
IEC	ER32L615

Key Characteristics	
ISO9001, 2000 approved	
Low self discharge rate (less than 1% after 1 year of storage at +20°C	
Hermetic glass-to-metal sealing	
Non-flammable electrolyte	
U.L. recognized (file number MH18384)	

Example #2: Battery Optimized for Longest Lifetime (>= 20 Years)

Sample calculations for D cell

- 20 years = 175,200 hr.
- Average current draw at 25°C = 108μA
- Average current draw at 75°C = 65μA
 - > Sleep current has been quoted as 11μA
- PA calculation
 - > 1A for 1 sec every 4 hours = 70μA average

Example #2: Battery Optimized for Longest Lifetime (>= 20 Years)

What are the disadvantages?

- Low maximum pulse discharge current
 - > 250mA
- High output impedance (same thing)
 - > Old and cold output impedance can be as high as 50 ohms for a D cell!
 - > >50mA collapses the battery

Specifications	
Nominal voltage	3.6V
Nominal capacity (at 4mA, +20°C, 2.0V cut off)	19,000mAh
Max. continuous discharge current (to get 50% of the nominal capacity, +20°C, 2.0V cut off)	100mA
Max. pulse discharge current	250mA
Weight	100g
Operating temperature range	-55°C ~ +85°C
Reaction surface area	40cm ²
IEC	ER32L615

Key Characteristics
ISO9001, 2000 approved
Low self discharge rate (less than 1% after 1 year of storage at +20°C
Hermetic glass-to-metal sealing
Non-flammable electrolyte
U.L. recognized (file number MH18384)

Example #3: High Capacity With Small Size – Silver Oxide

Battery characteristics

- Higher runtime than Li-ion
- Flatter discharge curve than alkaline
- Higher voltage (1.55V) than Hg batteries

Circuit implications

- Need minimum start voltage <1.5V
- Power can be optimized for narrow operating range
- Early detection of battery failure requires high precision in voltage monitoring

Example #4: Li-Ion Rechargeable Batteries

Battery characteristics

- $V_{BATT} \rightarrow 2.7 \text{ to } 4.375V$
- Battery safety risk at high temperature
- Charging and discharging profile affect battery lifetime
- High current capability

Circuit implications

- DC-DC converter optimized for wide power input range of operation
- Need dedicated fuel gauge function to monitor battery health
- Need dedicated charger and access to battery periodically

Always-on Functions vs. On-demand Functions

Expanding the Always-on Circuits

Battery Seal – Push-button Controllers

Battery seal improves ship-mode battery life, especially in non-rechargeable applications

For push-button applications, MAX16150 consumes 20nA I_O – industry's lowest

Ship Mode/ON-OFF IC Use Case

Example: CO₂/smoke detector

Without battery seal/ship mode

Sleep mode consumption = 1.2μ A

With battery seal/ship mode

Key Considerations for Battery Seal Design/On-off Design

Requirements

- Standby current/shutdown current
- Small size
- System interrupt mechanism

Maxim solution

- Standby current → 20nA across temp
- 6-bump WLP/SOT23-6
- Integrated one-shot interrupt generation

System Monitoring: WDT, Supervisor

Making the Case for nanoPower Supervisors/WDT

Example: Fitness watch

μC with integrated WDT/supervisor function

- Need specialized micro \rightarrow 5µA to implement all functions in a µC
- Diagnostics not robust → micro checking itself as opposed to second layer of protection

With separate WDT/supervisor functions

- Simple Arm[®] M0 is enough μ C no need for low power
- Micro diagnostics works even if micro fails
- Intrinsically robust

Simplifies overall μC requirements and I_O consumption

Key Considerations for Supervisor Products

Requirements

- Low I_Q
- Accuracy
- Small size

Maxim solution

- $I_Q \rightarrow 125nA$
- Accuracy → 1%
- 4 pin/6 pin WLP, SOT23-6, uDFN

DC-DC Converter

nanoPower DC-DC Use Case

Example: Asset-tracking beacon

Over 20% improvement in battery lifetime over a system with $4\mu A$ of I_O

Key Considerations for nanoPower DC-DC Converters

Requirements

- Fast transient response out of nanoPower mode (transient undershoot/sag)
- Small size
- Efficiency @ 10-500μA load as opposed to efficiency @ 100mA load

Maxim solution

- <3% transient sag
- 6-bump WLP, 2 x 2 uDFN
- 88% efficiency @ 10μA, >90% efficiency for >15μA

Considerations for On-demand Circuits

Key Considerations for On-demand Power Conversion

Requirements

- Low shutdown current
- Good full-load performance
 - > Noise, PSRR, transient response, dropout for LDO, size
 - > Medium-to-full load efficiency, transient response, ripple, size
- Programmable/fast startup

Maxim solution

- ISHDN → <1nA
- >70dB PSRR
- <5μV noise, 50mV dropout, programmable soft-start, 6-bump WLP
- >90% efficiency, small size, soft-start, 6-bump WLP

Keeping Circuits Always-on

Advantages

- Some features cannot be realized without always-on circuits
- 10x improved response time to event-driven action

Disadvantages

- Quiescent current consumption higher
- Potential degradation in circuit performance due to low I_Q consideration
- Sensor heating is dependent on voltage and not power
 - > Potential degradation in lifetime

Conclusions

Improving system performance requires a holistic approach at a system level

In many cases, the use of small building-block power and supervisory components can simplify the process to achieve a high level of performance Quiescent current is an important consideration – but knowing the system requirements and making the right tradeoffs to optimize the system performance is the key to success

