MPS 新一代磁角度传感器MA600介绍与应用

Dec 2022

rev 20180504

Content

• MPS Magnetic Angle Sensor Product Line Introduction

- o Block diagram
- o Road map
- Main Features of MA600
	- o Resolution
	- o Bandwidth
	- o INL
	- o Latency
- MA600 Application and Design Note
	- o End of shaft
	- o Side of shaft
	- o BCT compensation
	- o User calibration

MagAlpha™ Generic Block Diagram

MagAlpha™ Advantages

100000

Position Product Portfolio

Automotive AEC1 & ASIL Compliant Position Sensors

What Technology Goes Where?

zycnu.

Main Features of MA600

What is resolution?

Metrology: Measurement Error

Measurement error:

Random Error - Why 6σ?

 \pm 30 means 99.73% of the time, the angle read is within \pm 3 σ of the mean.

0.27% of data are out of the +/- 3 σ range

Definition of Resolution

Criteria: if $|pos2 - pos1|$ > resolution then with 1 measurement you can answer the question "is the system at position 1 or 2?" correctly 99.73% of the time

Measurement Occurrence Measurement Occurrence

assuming that the digital steps are finer than the noise

This is the analog of the *noise free code resolution* used for AD converters.

It is equal to the number of **stable bits**:

For an **angle sensor** $full scale = 360°$ therefore,

Resolution in bits =
$$
\log_2 \frac{360^\circ}{6\sigma}
$$

Competitor A

- 15 bit representation of absolute angle value on the output (resolution of 0.01°)
- Because $\log_2 \frac{360}{0.01}$ 0.01 $= 15.1$
- This is the digital grid, not the resolution!
- In this example the "resolution" in the EC table is not available
- Use RMS noise shown in EC table

1) Not subject to production test werified by design/oberactorization

• Resolution is calculated with $log_2 \frac{360^\circ}{6\sigma}$, where 6σ = 6 x 0.05°

Actual Resolution is 10.2 bits, not 15 bits

Competitor B

 \Box

 \sim \sim \sim

• In this example, resolution is only given as the internal ADC resolution

• Resolution is calculated with $log_2\frac{360^\circ}{6\sigma}$, where 6σ is pk-pk noise = 0.03°

Actual Resolution is 13.6 bits, not 15 bits

 \overline{a} . The state \overline{a}

Resolution Performance

 $\tau = 16$ ms 13 $t = 8$ ms $\tau = 4$ ms EFFECTIVE RESOLUTION (bit) 12 \overline{t} = 2 ms $\tau = 1$ ms 11 $r = 512 \,\mu s$ \overline{t} = 256 μ s 10 \overline{t} = 128 µs $\tau = 64$ µs 20 60 80 100 120 \circ 40 MAGNETIC FIELD (mT)

Effective Resolution (3 σ)

MA732 (Hall based)

What resolution influence:

- 1. Position error
- 2. In servo motor control, high frequency vibration, noisy sound

What will affect the resolution:

- 1. Magnetic field strength (not for MA600)
- 2. Internal digital filter

MA600 (TMR based)

Resolution and Bandwidth

BW – Resolution Tradeoff

Resolution (bit)

- Higher final resolution trades off bandwidth, resulting in a slower sensor
- Output bandwidth should be indicated in datasheet

How to Choose Bandwidth

Thumb rule: for dynamic response stability, the MA bandwidth should be 5-10x times than the PID bandwidth

 $f_{\text{cutoff}} > 5f_{\text{PID}}$

Even more important for multiple nested loops.

Resolution / Bandwidth Tradeoff

E Figure 1

File Edit Tools

Resolution=13.5 bit

Resolution=14.6 bit

MA600 – Programmable Resolution & BW

Spectrum (FW = $5-11$)

INL of MPS parts: MA7XX: 1-1.2!**max MA600**"**0.5**!**max (<0.1**!**after user calibration)**

What INL influence:

- 1. Position error
- 2. In servo motor control, low frequency vibration

Latency

Systematic Error Sources

- 1. Integral Non-Linearity (INL)
- 2. Magnetic Misalignment with Sensor
- 3. Latency Impacts Angle Error at Speed
	- Example with a 30k RPM Motor:
	- To calculate latency error:
		- 1. Convert motor rpm to deg/sec = RPM \times 6
		- 2. Latency x rpm in deg/sec

<- Latency is not easy to be calibrated out and can be a large error source. Higher speed = higher error.

MA600 – Low INL, High Bandwidth Position Sensor

Key Specifications

- **High Accuracy: 0.5° INL**
	- In-system calibration: 0.1° INL
	- Includes on-chip look-up table
- **High Bandwidth & Resolution: Up to 15-Bit (±3σ)**
	- No Internal Hysteresis
- **No Latency**
	- Minimizes error at speed
- **Flexible Operation to Fit Many Applications:**
	- Reliable operation down to 20mT
	- Works in Side-Shaft or End of Shaft

Applications

- Robotics
- Multi-Turn Encoders
- FOC Motor Control

• Speed Sensors **3x3mm2 QFN**

MagAlpha™ Main parameters for hallbased sensor and TMR based sensor

- **1. Resolution: hall sensor (8-13.5bit), TMR sensor (9-15bit), with same bandwidth, the TMR sensor has almost 3bit higher resolution.**
- **2. Bandwidth: hall sensor(23Hz-6kHz); TMR sensor (150-21kHz)**
- **3. INL: hall sensor < 1**! "**TMR sensor < 0.5**!
- **4. Latency: MA732 9us; MA600 0us**
- **5. User calibration function integrated in MA600**
- **6.** Angle temp drift: hall sensor (0.015/℃), TMR **sensor (0.002/**℃**)**

Table 17: Filter Window

MA600

MA732

MA600 Applications

Factory Automation (Precision Robotics) Robotics and Fluid Control

Electronic Power Steering

Reduce Cost with Magnetic Encoders

Optical Encoder + Motor

Magnetic Encoder + Motor

Customer Benefits

Reduce Cost 5-10x

Immune to Dust and Debris

Operates in Harsh Environments Without Costly Enclosures

End of Shaft Design Note

Same B_X and B_Y amplitude Online simulation to the SM

http://senso

Side of Shaft Design Note

- well mag
- Find a su magnetic need do
- Mechani accurate
- No magn

http://senso

Side of Shaft Design Note

Different side shaft configurations

Side Side Top/Bottom Side Orthogonal

Common magnet imperfections

BCT Compensation (Example)

- Ring magnet
- Diametral magnetization
- OD(outter diameter)=20mm, ID(inner diameter)=8mm, H(height)=6mm
- Material: NdFeB (Brem=1.2T)

Position 2

The imperfection of magnet is hard to be compensated by BCT

User Calibration (Example)

- 1. Adjust the zero position of the motor, make it close to the zero position of sensor
- 2. Rotate the motor with step of 11.25°, record the sensor output out_i(deg) when motor turns to 0° , 11.25°, 22.5°…until 348.75°, and get the correction value $corr_i(\text{deg})$:

 $corr_i$ (deg) = ref_i(deg) – out_i(deg)

3. Calculate the corresponding register value $corr_i$ (dec)

\n- 1) If
$$
corr_i(\text{deg}) \geq 0
$$
 $corr_i(\text{deg}) = \frac{corr_i(\text{deg})}{360} \cdot 128 \cdot 32$
\n- 2) If $corr_i(\text{deg}) < 0$ $corr_i(\text{deg}) = \frac{corr_i(\text{deg})}{360} \cdot 128 \cdot 32 + 256$ Write the value into Reg32 – Reg63 accordingly.
\n

-
- 4. Store the Reg32 Reg63 (Block1) value into NVM

Position 2 -> further calibrated

Thank You

For more information, contact: sensors@monolithicpower.com

Check out our Sensor Solutions brochure at **MonolithicPower.com**

