MPS 新一代磁角度传感器MA600介绍与应用

Dec 2022

Content

- MPS Magnetic Angle Sensor Product Line Introduction
 - Block diagram
 - o Road map
- Main Features of MA600
 - Resolution
 - Bandwidth
 - o INL
 - Latency
- MA600 Application and Design Note
 - End of shaft
 - o Side of shaft
 - BCT compensation
 - User calibration

MagAlpha™ Generic Block Diagram

MagAlpha™ Advantages

Position Product Portfolio

MagAlpha™ (Motors & Rotary Encoders)

MA102/302 12-bit Res SPI, ABZ, UVW 1 to 8 Pole Pair Emulation MA310/330 12-14 bit Res

12-14 bit Res ABZ, UVW Configurable Filter for Res & BW MA702/4/10

10-12 bit Res SPI, ABZ 1 to 256 Pulse Per Revolution (PPR) MA730/2/4

12-14 bit Res SPI, ABZ, PWM 1 to 1024 PPR 3µs low latency Prog Filter MA735/6

12-14 bit Res SPI, ABZ 1 to1024 PPR 3µs Latency UTQFN 2x2mm² MA600 14.5-bit.

14.5-bit, 0.5°(0.1°) INL High BW, No Latency, SPI, SSI, UVW, ABZ, PWM

MagAlpha[™] (HMI, low-power angle detection) MA800/20/50

8-bit Res SPI, SSI, ABZ, PWM 1.64 ppr Dial & Push Button

MA780/2

8-14 bit Res SPI auto wake/sleep; <0.5µA idle QFN 3x3 / UTQFN 2x2 Angle Detection

Q2 2023

MA900

Differential Immune to Stray Mag Fields 12-bit data flex. Interface 2H 2023

MA95x

12-bit, Linear & Angular Motion, Hi-Resolution Multi-Pole Pair Flex. Interface

MagVector™ (3D Position Sensors)

MagDiff™

MagProfile™

MV300

3D Mag Sensing 12-bit data Comp Output I²C, SPI Temp. Sensor SOT23-6

Automotive AEC1 & ASIL Compliant Position Sensors

MagAlpha™ (Motors, Rotary Encoders) MAQ430 12-bit, SPI, UVW 1 to 8 Pole-Pair Emulation 150°C, AEC1

MAQ470/3 14-bit, SPI, ABZ 1 to 1024 Pulse Per Revolution 150°C, AEC1 S: Now: P: Q1 23

MAQ600

14.5-bit,
0.5°(0.1°) INL
No Latency,
High BW
SPI, SSI, UVW,
ABZ, PWM
Selectable Outs

MAQ650 Gen2
3.3V, 5V
18-bit
No Latency,
0.3° INL
High BW

S: 2024

MagAlpha™ (Contactless HMI) MAQ8x0 8-bit SPI, SSI, ABZ, PWM; 1.64 ppr 150°C, AEC1 Dial & Push Button

S: Now: P: Q4 22

MagDiff™ MagProfile™ 12-bit, Differential;
Immune to Stray
Fields
flexible Interface
150°C
ASIL B(D)
Compliant
S: Now; P: Q4 23

S: Q2 23: P: Q1 24

MAQ79010 MPSafe

S: Q3 23; P: Q2 24

MAQ79xxx 12-bit, Linear & Angular Motion Multi-Pole Pair ASIL B(D)

MagVector™ (3D Position Sensors) MVQ300
3D Magnetic
Sensor, Comp Out
12-bit Data
I²C, SPI
125°C, AEC1
Component Out w/
Temp Sensor

Released

Newly Released

Sampling

Preview

What Technology Goes Where?

MagAlpha™	MagDiff™	MagProfile™	MagVector™
 One sensor area on silicon (Orthogonal Vertical Hall Devices) Detects rotary movements Allows Push-button (except MA600) Applicable for end-of-shaft and side-shaft applications 	 Four sensor on corners of silicon for max separation (Planar hall elements) Differential measurement for sensors in opposite corners Detects rotary movements Eliminates homogenous magnetic stray fields Allows Push-button Applicable for end-of-shaft applications only 	 Sensor elements in a row on silicon (Planar hall elements) Differential measurement possible – possibility to eliminate homogeneous magnetic stray fields Detects linear movements Detects rotational movement 	 One Sensor area on silicon Detects field strengths in each direction (x-y-z) Requires external processing to determine movement/angle

Legend:

= Magnetic Field Direction Sensed

= Sensing Motion Detected

Main Features of MA600

What is resolution?

Metrology: Measurement Error

Measurement error:

 σ = rms of measurements = measurement precision

For gaussian noise distribution: Noise peak-peak = 6 σ

Random Error - Why 6σ?

 \pm 3 σ means 99.73% of the time, the angle read is within \pm 3 σ of the mean.

0.27% of data are out of the +/- 3σ range

Definition of Resolution

Criteria: if |pos2 - pos1| > resolution then with 1 measurement you can answer the question "is the system at position 1 or 2?" correctly 99.73% of the time

|pos2 - pos1| < resolution

|pos2 - pos1| < resolution

|pos2 - pos1| = resolution

|pos2 - pos1| > resolution

Resolution in Bit

assuming that the digital steps are finer than the noise

Resolution in bit

$$\log_2 \frac{full\ scale}{peak - peak\ noise}$$

This is the analog of the *noise free code resolution* used for AD converters.

It is equal to the number of **stable bits**:

For an **angle sensor** $full\ scale = 360^{\circ}$ therefore,

Resoluntion in bits =
$$\log_2 \frac{360^{\circ}}{6\sigma}$$

Competitor A

Because
$$\log_2 \frac{360}{0.01} = 15.1$$

• 15 bit representation of absolute angle value on the output (resolution of 0.01°)

This is the digital grid, not the resolution!

- In this example the "resolution" in the EC table is not available
- Use RMS noise shown in EC table

Angle noise (RMS)	N _{Angle}	0.08	•	FIR_MD = 1 ¹⁾
		0.05	0	FIR_MD = 2 ¹⁾ (default)
		0.04	0	FIR_MD = 3 ¹)

1) Not subject to production test - verified by decign/characterization

• Resolution is calculated with $log_2 \frac{360^{\circ}}{6\sigma}$, where $6\sigma = 6 \times 0.05^{\circ}$

Actual Resolution is 10.2 bits, not 15 bits

Competitor B

In this example, resolution is only given as the internal ADC resolution

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
ADC Resolution on the raw signals sine and cosine	R _{ADC}	Slow Mode ⁽¹⁰⁾ Medium Mode ⁽¹⁰⁾ Fast Mode ⁽¹⁰⁾		15 14 14		bits bits bits

Output stage moise	Сіапірец Оцірці		0.05		70 V UU
Noise pk-pk ⁽¹⁴⁾	VG = 9, Slow mode, Filter=5		0.03	0.06	Deg
	VG = 9, Fast mode, Filter=0		0.1	0.2	Deg
		<u>.</u> .			0/14

• Resolution is calculated with $log_2 \frac{360^{\circ}}{6\sigma}$, where 6σ is pk-pk noise = 0.03°

Actual Resolution is 13.6 bits, not 15 bits

Resolution Performance

What resolution influence:

- 1. Position error
- 2. In servo motor control, high frequency vibration, noisy sound

What will affect the resolution:

- 1. Magnetic field strength (not for MA600)
- 2. Internal digital filter

Effective Resolution (3σ)

MA732 (Hall based)

Resolution vs Magnetic Field FW=5 (default)

MA600 (TMR based)

Resolution and Bandwidth

- Higher final resolution trades off bandwidth, resulting in a slower sensor
- Output bandwidth should be indicated in datasheet

BW – Resolution Tradeoff

How to Choose Bandwidth

Bandwidth determines system dynamic response

MA732:

$$H(s) = \frac{1 + 2\tau s}{(1 + \tau s)^2}$$

MA600:

$$H_{FE} = \frac{1}{(1+\tau_{FE} s)^2}$$

$$H_{\text{filter}} = \frac{1 + (2 + \delta)\tau}{(1 + \tau s)^2}$$

Thumb rule: for dynamic response stability, the MA bandwidth should be 5-10x times than the PID bandwidth

$$f_{cutoff} > 5f_{PID}$$

Even more important for multiple nested loops.

Resolution / Bandwidth Tradeoff

Resolution=14.6 bit

Resolution=13.5 bit

MA600 – Programmable Resolution & BW

Parameter	Symbol	Condition	Min	Тур	Max	Units
Absolute Output – Serial			-			
Resolution ⁽⁷⁾ (±3σ deviation of noise)			12		15	bit
RMS Noise (7)			0.002		0.015	deg
Refresh Rate	Frefresh		780	800	820	kHz
Data Output Length				16		bit
Response Time			_			_
Power-up Time (7)		FW = 0			250	μs
Latency (7)		FW = 5-11		0	1	μs
Filter Cutoff Frequency	Fcutoff	FW = 0		17		kHz

Spectrum (FW = 5-11)

FW (3:0)	т (µs)	Resolution (bits)	Latency (µs)	f _{cutoff} (kHz)
0	0	12.3	32	17
5 (default)	40	12.5	0	12
6	80	13	0	5.8
7	160	13.5	0	2.7
8	320	14	0	1.3
9	640	14.3	0	0.63
10	1280	14.6	0	0.31
11	2560	14.8	0	0.15
12	5120	15.0	0	0.075

INL

$$INL = \frac{\max(err(a)) - \min(err(a))}{2}$$

INL of MPS parts:

MA7XX: 1-1.2° max

MA600: 0.5° max (<0.1° after user calibration)

What INL influence:

- 1. Position error
- 2. In servo motor control, low frequency vibration

Latency

Systematic Error Sources

- Integral Non-Linearity (INL)
- 2. Magnetic Misalignment with Sensor
- 3. Latency Impacts Angle Error at Speed
 - Example with a 30k RPM Motor:
 - To calculate latency error:
 - 1. Convert motor rpm to deg/sec = RPM \times 6
 - 2. Latency x rpm in deg/sec

Latency Error	Comp A	MA600
Latency	10µs	0µs
@30k RPM	1.8°	0°

<- Latency <u>is not easy to</u> be calibrated out and can be a large error source. Higher speed = higher error.

MA600 – Low INL, High Bandwidth Position Sensor

Key Specifications

- High Accuracy: 0.5° INL
 - In-system calibration: 0.1° INL
 - Includes on-chip look-up table
- High Bandwidth & Resolution: Up to 15-Bit (±3σ)
 - No Internal Hysteresis
- No Latency
 - Minimizes error at speed
- Flexible Operation to Fit Many Applications:
 - Reliable operation down to 20mT
 - Works in Side-Shaft or End of Shaft

Applications

- Robotics
- Multi-Turn Encoders
- FOC Motor Control
- Speed Sensors

MagAlpha™ Main parameters for hall-based sensor and TMR based sensor

- Resolution: hall sensor (8-13.5bit), TMR sensor (9-15bit), with same bandwidth, the TMR sensor has almost 3bit higher resolution.
- 2. Bandwidth: hall sensor(23Hz-6kHz); TMR sensor (150-21kHz)
- 3. INL: hall sensor $< 1^{\circ}$, TMR sensor $< 0.5^{\circ}$
- 4. Latency: MA732 9us; MA600 0us
- 5. User calibration function integrated in MA600
- 6. Angle temp drift: hall sensor (0.015/°C), TMR sensor (0.002/°C)

MA732

Table 17: Filter Window

FW(7:0)	Time Const. τ (μs)	Effective Resolution at 45mT (bit)	f _{cutoff} (Hz)	Power- Up Time (ms)
51	64	9.5	6000	0.5
68	128	10	3000	1.1
85	256	10.5	1500	2.5
102	512	11	740	5.5
119 (default)	1024	11.5	370	12
136	2048	12	185	26
153	4096	12.5	93	57
170	8192	13	46	123
187	16384	13.5	23	264

MA600

FW (3:0)	т (µs)	Resolution (bits)	Latency (µs)	f _{CUTOFF} (12) (kHz)			
0	0	12.3	32	17			
1-4		Not recommended					
5 (default)	40	12.5	0	12			
6	80	13	0	5.8			
7	160	13.5	0	2.7			
8	320	14	0	1.3			
9	640	14.3	0	0.63			
10	1280	14.6	0	0.31			
11	2560	14.8	0	0.15			

MA600 Applications

Factory Automation (Precision Robotics)

Robotics and Fluid Control

Electronic Power Steering

Reduce Cost with Magnetic Encoders

Optical Encoder

Magnetic Encoder

Optical Encoder + Motor

Magnetic Encoder + Motor

Customer Benefits

Reduce Cost 5-10x

Immune to Dust and Debris

Operates in Harsh Environments Without Costly Enclosures

End of Shaft Design Note

- Appropriate magnetic filed: 20mT-80mT is preferred for MA600
- Mechanical setup and installation should be as accurate as possible
- No magnetizable materials close to magnet

Same B_X and B_Y amplitude

Online simulation tools: http://sensors.monolithicpower.com/

Side of Shaft Design Note

Different B_X and B_Y amplitude

- More requirements for a magnet: shape, material, well magnetized
- Find a suitable position for sensor: appropriate magnetic field strength, less magnetic distortion, need do the simulation first
- Mechanical setup and installation should be as accurate as possible
- No magnetizable materials close to magnet

Online simulation tools: http://sensors.monolithicpower.com/

Side of Shaft Design Note

Different side shaft configurations

Side Top/Bottom

Side Orthogonal

Common magnet imperfections

ideal

BCT Compensation (Example)

- Ring magnet
- Diametral magnetization
- OD(outter diameter)=20mm, ID(inner diameter)=8mm, H(height)=6mm
- Material: NdFeB (Brem=1.2T)

BCT Compensation (Example)

 \uparrow

Position 1

BCT 144

*Optimum value must be found experimentally

Before BCT compensation After BCT compensation

160

Rotator's angle(deg)

Error Curve Comparison

200

240

120

-0.75

BCT=148, INL=0.63deg

280

320

Position 2

BCT 104

*Optimum value must be found experimentally

The imperfection of magnet is hard to be compensated by BCT

User Calibration (Example)

- Adjust the zero position of the motor, make it close to the zero position of sensor
- 2. Rotate the motor with step of 11.25° , record the sensor output $\operatorname{out}_i(\operatorname{deg})$ when motor turns to 0° , 11.25° , 22.5° ...until 348.75° , and get the correction value $\operatorname{corr}_i(\operatorname{deg})$:

$$corr_i(deg) = ref_i(deg) - out_i(deg)$$

- 3. Calculate the corresponding register value $corr_i(dec)$
 - 1) If $corr_i(deg) \ge 0$

$$corr_i(dec) = \frac{corr_i(deg)}{360} \cdot 128 \cdot 32$$

2) If $corr_i(deg) < 0$

$$\operatorname{corr}_{i}(\operatorname{dec}) = \frac{\operatorname{corr}_{i}(\operatorname{deg})}{360} \cdot 128 \cdot 32 + 256$$

Write the value into Reg32 – Reg63 accordingly

4. Store the Reg32 – Reg63 (Block1) value into NVM

Position 2 -> further calibrated

Thank You

For more information, contact:

sensors@monolithicpower.com

Check out our Sensor Solutions brochure at MonolithicPower.com

