

Maxim Low Power Microcontrollers

IOT

 \bigcirc

Focus Markets

•

Se,

 $\boldsymbol{<}$

55

9.0

?

Ŧ

Industrial

MEDICAL

Health Care Beclar Healtal Pharmacist Nurso

Bontist Finst Aid Surgeon Emorgency

> Doctor Hospital Pharmacist Nurse Dentist First Aid Surgeon Emergency

Success Stories

Smart Watches

Smart Mattresses

ECG Patches

Door Locks with Finger Print Reader

Thermal Camera Phone Modules

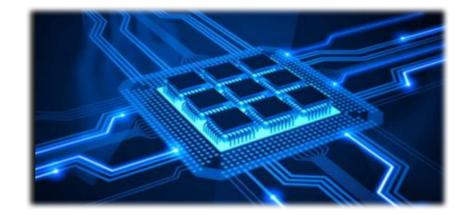
Longer Battery Life

More time between battery recharging or replacement

Energy Efficiency	 Low Active, Standby & Retention Power Fast wake up Advanced DN4A Options
High Performance	 Advanced DMA Options Consumption Flexible Clock Options High Speed Relaxation Oscillator Low Power RC Oscillator
Strong Security	 32kHz Crystal Oscillator Dual Voltage I/O Large Memory for longer logging
Smart Integration	between wakeup

Richer User Experience

More time between battery recharging or replacement

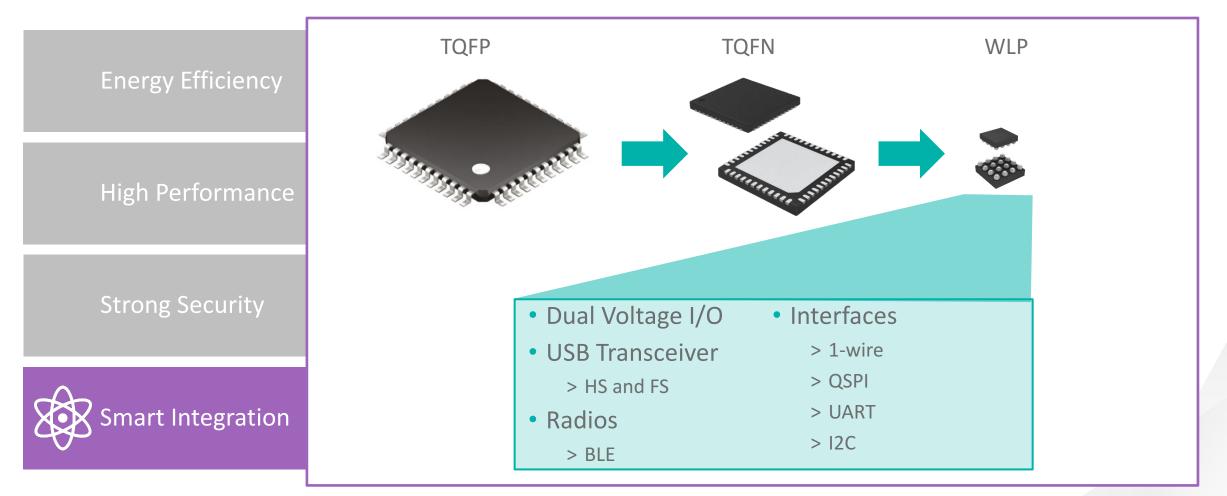

Energy Efficiency High Performance **Strong Security** > QSPI > 12C Smart Integration > USB

- High Speed Clocking > Up to 120MHz
- Large memory > Up to 1MB SRAM

 - > Up to 3MB Flash
 - > XIP for expansion of memory
- SIMD DSP Extensions
- Interfaces
 - > UART

> 1-Wire

- Floating Point Unit
- Multi-Core Architectures Options


Protect Sensitive Data and IP

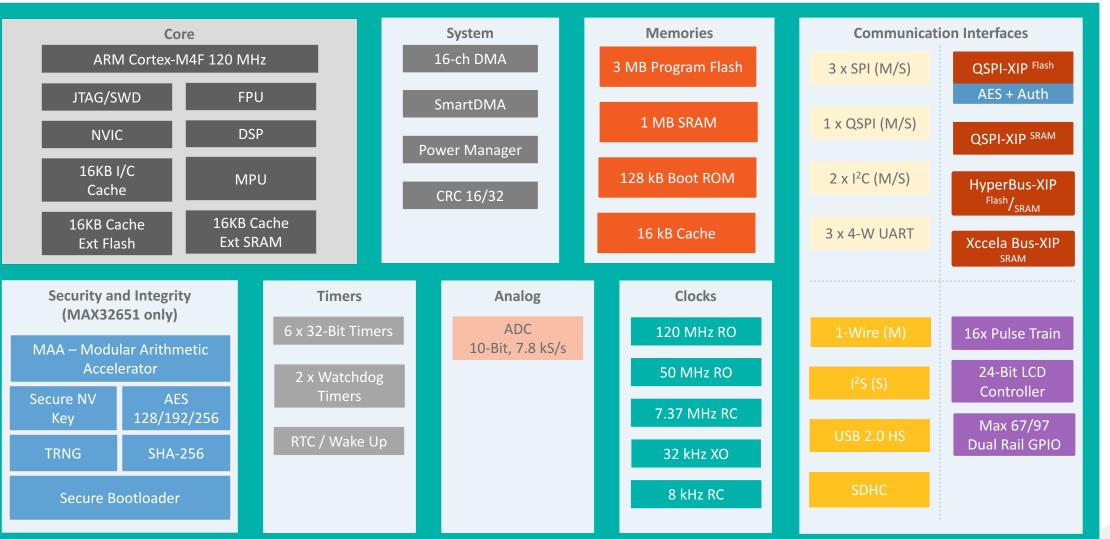
Deter counterfeits and guard customer privacy

Smaller, Lighter Products

Facilitates Smaller Form Factor or Increased Functionality on existing Form Factor

High Performance Ultra-Low Power ARM Cortex Selector Guide

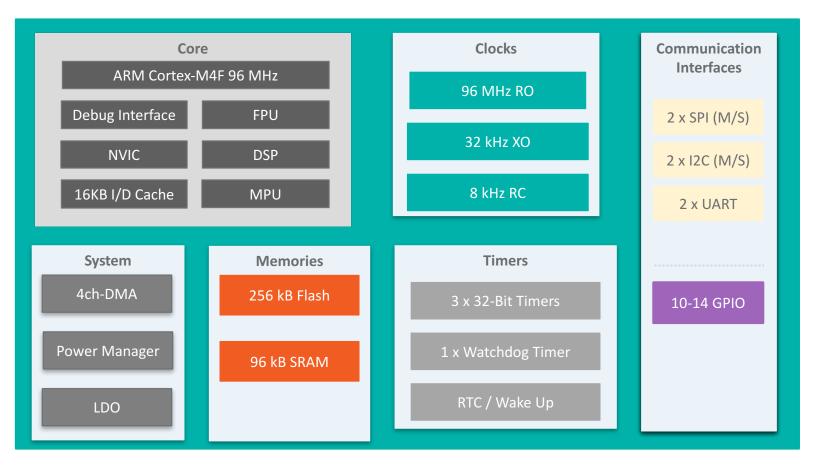
Device	<u>MAX32620/21</u>					MAX32665/66/67/68
Status	Production	Production	Production	Production	Production	Production ^[2]
Core	Cortex M4 w/ FPU	Cortex M4 w/ FPU	Cortex M4 w/ FPU	Cortex M4 w/ FPU	Cortex M4 w/ FPU	Dual Cortex M4 w/ FPU
Security	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark
Efficiency	127uW/Mhz	127uW/Mhz,	127uW/Mhz	104uW/MHz,	50uW/MHz ^[1]	90uW/MHz
Max Freq.	96MHz	96MHz	96MHz	120MHz	96MHz	96MHz
Flash	2MB	512kB	2MB	3MB	256kB	1MB
Static RAM	256kB	160kB	512kB	1MB	96kB	560kB
Cache	8kB	8kB	8kB	16kB	16kB	16kB on each core
SPI Master/Slave	3/1	3/1	3/1	3	2	3
UART	4	3	4	3	2	3
I2C Master/Slave	3/1	2/1	3/1	2	2	3
I2S Master/Slave	-	-	-	2	2	1
1-Wire Master	1	1	1	1	-	1
SPI XIP	1 (Flash)	1 (Flash)	1 (Flash)	2 (Flash/SRAM)	-	2 (Flash/SRAM)
SDHC	-	-	-	1	-	1
HyperBus	-	-	-	1	-	-
XccelaBus	-	-	-	1	-	-
SWD/JTAG	\checkmark	\checkmark	\checkmark	\checkmark	🗸 (SWD Only)	\checkmark
USB	Full Speed	Full Speed	Full Speed	High Speed	-	High Speed
GPIO	49	40	66	105	14	48
Package Options	WLP, TQFP	WLP, TQFN	WLP, TQFP	WLP, TQFP	WLP, TQFN	WLP, CTBGA


[1] – At 24MHz

[2] - MAX32666 in production, MAX32665/67/68 sampling

MAX32650-52 Block Diagram

WLP-96, 4.4mm x 4.4mm, 0.4mm pitch WLP-140, 4.4mm x 4.4mm, 0.35mm pitch TQFP-144, 20mm x 20mm, .5mm pitch


MAX32650-52 Benefits & Features

Energy Efficiency	 104μW/MHz active, executing from cache (Core @ 1.1V) 1.6uW backup mode w/ RTC enabled & 32kB of SRAM Retained (1.8V)
Smart Integration	 Large embedded memory – 3MB Flash & 1MB SRAM External Flash/RAM scalability with QSPI-XIP, HyperBus & Xccela Bus
High Performance	 ARM Cortex M4 with Floating Point Unit & DSP; up to 120MHz High speed serial peripherals - 1MHz I2C & 60Mbps QSPI
Strong Security	 Modular Arithmetic Accelerator for fast ECDSA, RSA AES 128-256 bit HW Accelerator & Secure Boot Loader

MAX32660 Block Diagram

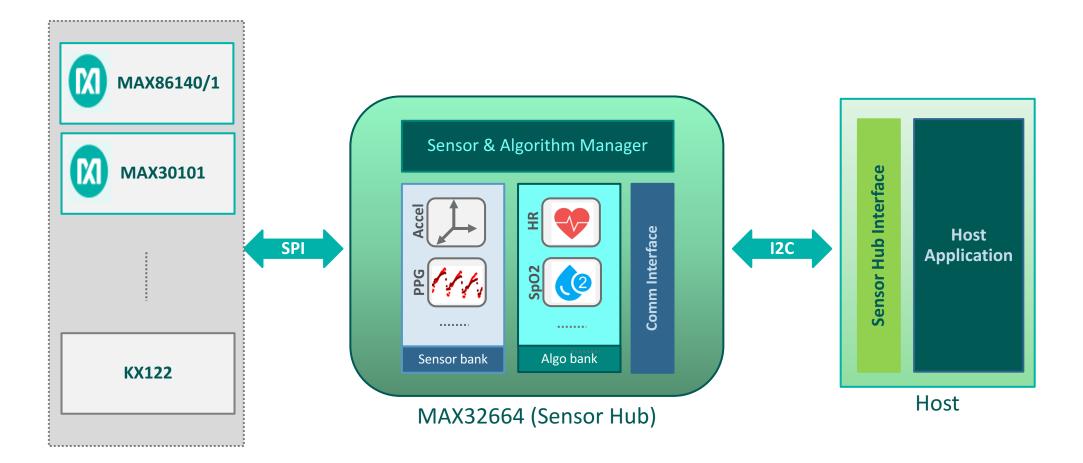
WLP-16, 1.6mm x 1.6mm, 0.35mm pitch TQFN-20, 4mm x 4mm, 0.5mm pitch TQFN-24, 3mm x 3mm, 0.4mm pitch

MAX32660 Benefits & Features

Energy Efficiency	 As low as 50uA/MHz executing from Flash 0.2uA in lowest power mode Flexible power manager with 4 power modes & 3 clock sources
Smart Integration	 Integrated LDO for operation from a single battery or supply 1.8-3.3V Embedded memory: 256KB flash and 96KB SRAM Ultra tiny footprint – 1.6m x 1.6m WLP
High Performance	 ARM Cortex M4 with Floating Point Unit & DSP; up to 96MHz @ 1.1V High speed serial peripherals: 3.2Mbps I2C & 48Mbps SPI 32-bit performance at 16-bit price

Introduction of MAX32664

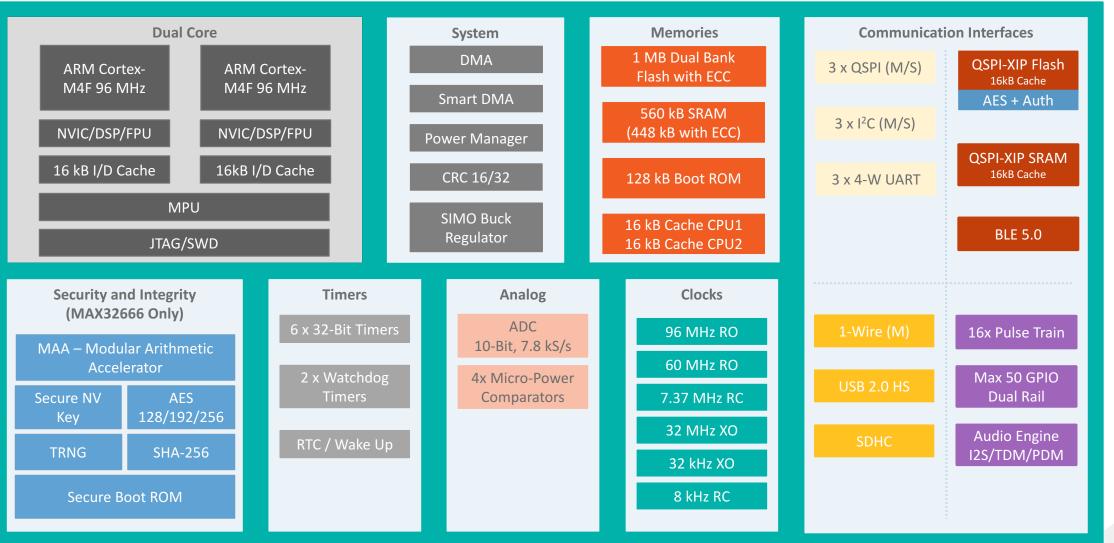
 MAX32664 is a sensor hub family with embedded firmware and algorithms for wearables. It enables customer desired sensor functionality, including communication with Maxim's optical sensor solutions and delivering raw or calculated data to the outside world.


MAX32664 and Algorithm Variations

Body Location	Feature	Sensor Hub	Sensor IC	Demo
Finger Tip	HR, HRV, SpO2	<u>MAX32664A</u>	MAX30101/2	MAXREFDES220
Finger Tip	HR, HRV, SpO2, BPT ¹	<u>MAX32664D</u>	MAX30101/2	MAXREFDES220-BPT ²
Wrist, Chest, Forehead	HR, HRV	<u>MAX32664B</u>	MAX86140/1	MAXREFDES101
Wrist, Chest, Forehead	HR, HRV, SpO2	<u>MAX32664C</u>	MAX86140/1	MAXREFDES102 ³

¹Blood Pressure Trending / ²Not public, ask your Maxim representative / ³Design files are ready to be distributed

Typical Application



Accelerometer may be connected to MAX32664 or Host MCU

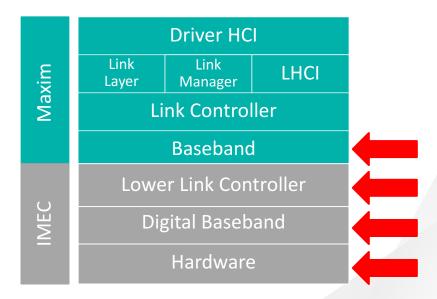
MAX32665/66 Block Diagram

WLP-109, 3.8mm x 4.2mm, 0.35mm pitch CTBGA-121, 8mm x 8mm, 0.65mm pitch

MAX32665-68 Benefits & Features

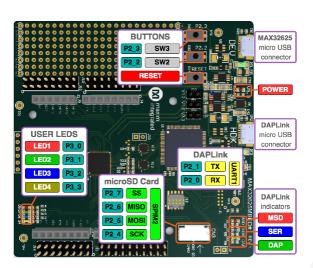
Energy Efficiency	• Rx Power: 5.0mW; Tx Power: 5.85mW @0dbm • 28uA/MHz @3.3 V - While (1), Sub 1uA lowest power mode
Smart Integration	 2.4GHz RF Transceiver supporting Bluetooth 5, Bluetooth 4.2 SIMO DC-DC Power Conversion 6 Clock Sources, Dual Voltage I/O
High Performance	 Dual ARM Cortex M4 with Floating Point Unit & DSP; up to 96MHz High reliability memory -Single Error Correct/Double Error Detect Dual Bank Flash – Execute from one , Write to the other
Strong Security	 Modular Arithmetic Accelerator for fast ECDSA, RSA AES 128-256 bit HW Accelerator & Secure Boot Loader

MAX32665-68 Radio Specifications


Bluetooth 5	Up To 2 Mbps data throughput, long range (125 kbps and 500 kbps)
RX Sensitivity	-95 dBm, 1Mbps mode, 37 Byte payload
Tx Output Power	+9.5 dBm, programmable down to -20 dBm in 4dB steps
Active mode RX	5mA @ 0.9V, 1Mbps mode, 37 Byte payload
Active mode TX at 0 dBm	6.5 mA @ 0.9V, 0dBm

BLE 5 Stack

- IMEC IP provides HW design and low-level, protocolagnostic control SW
- Maxim provides BLE link-layer SW
- ARM provides BLE upper layers and application examples
- IMEC and Maxim SW , along with part of ARM stack, provided in binary form
- Bluetooth 5.0 upgrade will involve IMEC hardware/software changes and Maxim baseband code changes
- 24KB SRAM, 100KB FLASH


Related Documents

You can find the related documents and resource in the website, show as next page. Include:

- Datasheet
- User's guider
- EV-Kits
- Reference design
- Development environment
- Application notes
- Other....

What Development Environments Does Maxim Support?

mbed	FreeZero installBroad support	 Limited debug Significant object overhead Heavy ARM oversight
ARMKEIL Microcontroller Tools	 Professional IDE Excellent debug Great support 	ExpensiveBarriers to entry
EIAR SYSTEMS	 Professional IDE Excellent debug Great support	ExpensiveBarriers to entry
eclipse	FreeExcellent IDEGood debug	Challenging setupNon-intuitive interface

What Development Environments Does Maxim Support?

mbed	 Register on the website: <u>https://os.mbed.com/</u> Enter the compiler Set up your board and project 		
ARMKEIL Microcontroller Tools	 Download the MDK from <u>http://www.keil.com/</u> Install the MDK and Maxim low-power MCU package 		
EIAR SYSTEMS	 Download from <u>https://www.iar.com/</u> Install the IAR 		
eclipse	 Download from <u>Low Power ARM Micro Toolchain</u> (Windows) This tool integrate IDE and examples 		

Hardware Emulator

Olimex-arm-usb-tiny Only for JTAG

Easy support in Eclipse

CMSIS-DAP Only for SWD

Supported by KEIL, IAR, Eclipse Jlink JTAG & SWD

Supported by KEIL, IAR, Eclipse

